Reg. No.:						V 10	
0		1			-		2000

Question Paper Code: 90480

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

Fifth Semester

Electronics and Communication Engineering

EC 8553 — DISCRETE - TIME SIGNAL PROCESSING

(Common to: Biomedical Engineering / Computer and Communication Engineering / Electronics and Telecommunication Engineering / Medical Electronics)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Calculate the number of multiplications needed in the calculation of DFT and FFT with 8 pt sequence.
- 2. Compare overlap add and overlap save method.
- 3. What is the need for pre warping?
- 4. List the advantage of direct form II realisation when compared with direct form I realisation.
- 5. Define Gibb's Phenemenon.
- 6. What do you refer from limit cycle oscillations?
- 7. Differentiate Fixed Point and Floating Point number representations.
- 8. What is quantization error?
- 9. List the addressing modes of digital signal processer.
- 10. What do you understand from pipe line operation of Digital signal processer?

- 11. (a) Summarize the following properties of DFT:
 - (i) Periodicity
 - (ii) Symmetry
 - (iii) Circular convolution
 - (iv) Linear filtering.

Or

- (b) Illustrate the 8-pt DFT of a sequence $x(n) = \{0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0\}$.
- 12. (a) Obtain the direct form I, direct form II and cascade form realisation for the given system.

$$y(n) = 0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$$

Or

- (b) An Analog filter has the transfer function $H(s) = \frac{10}{s^2 + 7s + 10}$. Design a digital filter equivalent using Impulse Invariant method for T = 0.2 sec.
- 13. (a) Design an ideal low pass filter with a frequency response $H_d\!\left(\!e^{jw}\right)\!=\!\begin{cases} 1 \ for \ \frac{-\pi}{2} \leq w \leq \frac{\pi}{2} \\ 0 \ for \ \frac{\pi}{2} \leq \left|w\right| \leq \pi \end{cases}.$

Find the values of h(n) for N=1. Find H(z).

Or

(b) Demonstrate the coefficients of a linear phase FIR filter of length M=15 which has a symmetric unit sample response and a frequency response that satisfier the condition.

$$H_r \left(\frac{2\pi K}{15} \right) = \begin{cases} 1 & k = 0, 1, 2, 3, 4 \\ 0.4 & k = 5 \\ 0 & k = 6, 7 \end{cases}$$

14. (a) Describe the quantization process and errors introduced due to quantization.

Or

- (b) For the II order IIR filter, the system fraction is $H(z) = \frac{1}{\left(1 0.5z^{-1}\right)\left(1 0.45z^{-1}\right)}.$ Examine the effect of shift in pole location with 3 bit coefficient representation in direct and cascade forms.
- 15. (a) Give detailed note about Arithmetic Instructions.

Or

(b) Draw the various architecture used in digital signal processer. Explain each in brief.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) For the given specifications, design an Chebyshev digital filter using Impulse Invariance Transformation.

$$0.9 \le |H(w)| \le 1$$
 for $0 \le w \le 0.25\pi$
 $|H(w)| \le 0.24$ for $0.5\pi \le w \le \pi$

Or

(b) Using linear convolution construct y(n) = x(n) * h(n) for the sequence $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ and $h(n) = \{1, 2\}$. Compare the result with by solving the problem with Overlap Add method and Overlap Save method.